Chapter 3: Differential Calculus
 \& Series Expansion

Class Note Synopsis (Part 2)
B.Sc Semester 3
Subtopic: Function of a Single Variable

Inverse function (Introduction), H.W, Limit fa Function (introduction) Appendix:

```
- Debashis Chatterjee
- Assistant Professor
- Dept. of Statistics - Visva Bharati
```

- This is Draft overview version of classnote

November 17, 2021

Instruction/ Suggestion:

This is Draft overview version of classnote. Such draft overview version of classnotes will be given time-to-time as a draft synopsis of the class discussions. Dear students, you should make your own "handwritten" classnote for your own future references \& you are advised to write down in details in your own notebook and complete all home works (H.W) that will be given time-to-time (refer to class discussions for solutions and hints).

1 H.W. from previous class

Home work 1. 1. Show that $f: \Re \rightarrow \Re$ defined by $f(x)=x^{3}$ is bijective function.
${ }^{* *} T / F$ Check whether $f: \Re^{+} \rightarrow \Re^{+}$defined by $f(x)=x^{2}$ is bijective function.
${ }^{* *} T / F$ Check whether $f(x)=[x]$ is bijective function.
2. Let $f: \Re \rightarrow \Re$ defined by $f(x)=x(x-1)(x-2)$. Then:
(a) f is one-one but not onto.
(b) f is not one-one but is onto.
(c) f is neither one-one nor onto.
(d) f is one-one and onto.
3. Check whether $f: \Re \rightarrow \Re$ defined by $f(x)=t(x)[t(x)+t(-x)]$ is ven function / odd function if
(a) if f even function
(b) if f odd function

2 Inverse of Real valued function

an inverse function (or anti-function) is a function that "reverses" another function: if the function f applied to an input x gives an output y, then applying its inverse function g (denoted as f^{-1} to y gives the result x.

Definition 2.1 (Inverse of a function:). Let f be a function whose domain is the set x, and whose codomain is the set Y. Then f is invertible if there exists a function g with domain Y and codomain X, with the property:

$$
f(x)=y \Longleftrightarrow g(y)=x
$$

Theorem 1 (Uniqueness of Inverse). If f is invertible, then the function g is unique.
which means that there is exactly one function g satisfying this property. Moreover, it also follows that the ranges of g and f equal their respective codomains (both bijection).
The function g is called the inverse of f, and is usually denoted as f^{-1}.
Example 2.1. (1) To convert Fahrenheit to Celsius: $f(F)=(F-32) \times 5 / 9$. The Inverse Function (Celsius back to Fahrenheit): $f^{-1}(C)=(C \times 9 / 5)+32$
(2) $f(x)=x^{2}$ does not have an inverse but $\left\{x^{2} \mid x \geq 0\right\}$ does have an inverse. (** Refer to class discussion)

Home work 2. 1. Show that, $\left(f^{-1}\right)^{-1}=f$
2. If f^{-1} exists then show that f is bijective function.
3. The graph of $f(x)$ and $f^{-1}(x)$ are symmetric across the line $y=x$.
4. Find f^{-1} if $f(x)=\log \left(\frac{1+x}{1-x}\right)$, where $|x|<1$

3 Limit of a function

3.1 Recall!

In calculus, you have already learnt limit. Intuitively,
Let $f(x)$ be a function defined at all values in an open interval containing a, with the possible exception of a itself, and let L be a real number.

If all values of the function $f(x)$ approach the real number L as the values of $x(\neq a)$ approach the number a, then we say that the limit of $f(x)$ as x approaches a is L.
(As x gets closer to $a, f(x)$ gets closer and stays close to L.) Symbolically, we express this idea as $\lim _{x \rightarrow a} f(x)=L$.

4 Analytical viewpoint of "Limit" of function

4.1 Previously (in 1 st Chapter) studied definition

Definition 4.1. A function $f(x)$ is said to tend to a limit L as x tends to a (we write $\lim _{x \rightarrow a} f(x)=$ L.) if:

$$
\forall \epsilon>0, \exists \delta \ni|f(x)-L|<\epsilon \forall|x-a|<\delta
$$

H.W.
 Again Study \& Write in notebook the followings: from Textbook
 (e.g., Apostol)

- $\epsilon-\delta$ Definition of limit of function when limit $L=+\infty$
- $\epsilon-\delta$ Definition of limit of function when limit $L=+\infty$
- $\epsilon-\delta$ Definition of limit of function for Right hand limit
- $\epsilon-\delta$ Definition of limit of function for Left hand limit
- Properties of limit (already studied in 11-12 syllabus)

Home work 3. Using definition of limit, show that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$
H.W. hint: See any textbook for similar problem and its solution (e.g., Apostol).

4.2 Sequential Definition of Limit of a function

We can combine some of the concepts that we have introduced before:

1. functions,
2. sequences,
3. topology
. If we have some function $f(x)$ and a given sequence a_{n}, then we can apply the function to each element of the sequence, resulting in a new sequence.
What we need is that if the original sequence converges to some number L, then the new sequence $f\left(a_{n}\right)$ should converge to $f(L)$, and if the original sequence diverges, the new one should diverge also.

Definition 4.2 (Limit of a Function (sequences version)). A function f with domain $D \subset \Re$ converges to a limit L as x approaches a number c if $D-\{c\}$ is not empty and for any sequence $\left\{x_{n}\right\} \in D-\{c\}$ that converges to c, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L. We write $\lim _{x \rightarrow c} f(x)=L$

Usefulness of Sequential Definition of limit

Show that, $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exists.
Proof. Let us consider two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ where $x_{n}=1 / n \rightarrow 0$ and $y_{n}=-1 / n \rightarrow$ $0, n \in \mathbb{N}$.
Then, $f\left(x_{n}\right)=1 \rightarrow 1$ and $f\left(y_{n}\right)=-1 \rightarrow-1$ (trivially).
Therefore, $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exists, as it is violating the sequential definition of limit.
**** Refer to class discussion.
Home work 4. Determine whether the following limits exists or not:

1. $\lim _{x \rightarrow 0} \cos (1 / x)$
2. $\lim _{x \rightarrow 0}[x]$
3. $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$
4. $\lim _{x \rightarrow 0} c 1 / x$
5. $\lim _{x \rightarrow 0} 1 / x \cdot \sin (1 / x)$

Proof. Hint for H.W Take suitably (** class discussion)
$x_{n}=\frac{1}{n+1}, y_{n}=\frac{-1}{n+1}$,
$x_{n}=\frac{2}{\pi(4 n+1)}, y_{n}=\frac{1}{n \pi}$
Home work 5. Show that, $\lim _{x \rightarrow \infty} x \sin (x)$ does not exists in $\Re \cup\{+\infty\}$.
Home work 6 (Do this Experiment :). Consider the function f, where $f(x)=1$ if $x \leq 0$ and $f(x)=2$ if $x>0$. The sequence $\{1 / n\}$ converges to 0 .

1. What happens to the sequence $\{f(1 / n)\}$?
2. The sequence $\left\{3+(-1)^{n}\right\}$ is divergent. What happens to the sequence $\left\{f\left(3+(-1)^{n}\right)\right\}$?
3. The sequence $\left\{(-1)^{n} / n\right\}$ converges to 0 . What happens to the sequence $\left\{f\left((-1)^{n} / n\right)\right\}$?

5 References

1. Apostol: Mathematical Analysis
2. Wekepedia references
